

Jurnal Anggapa

Volume 4, Nomor 1, April 2025

Website Jurnal : ojs.widyakartika.ac.id/index.php/anggapa

Analisis Struktur Bangunan Pada Gedung Kantor

Proklamasi Jakarta Pusat

Nur Liza Nasyira Musalfi¹, Gali Pribadi², Bermando Mangatur Siagian³

¹Teknik Sipil, Universitas Krisnadwipayana, Jakarta Timur, Indonesia, nurlizanasyira@gmail.com ²Teknik Sipil, Universitas Krisnadwipayana, Jakarta Timur, Indonesia, galipribadi@unkris.co.id ³Teknik Sipil, Universitas Krisnadwiayana, Jakarta Timur, Indonesia, mangaturbermando@unkris.ac.id

STATUS ARTIKEL

Dikirim 20 Februari 2025 Direvisi 20 Maret 2025 Diterima 18 April 2025

Kata Kunci: elemen horizontal, gaya geser, rasio tulangan

ABSTRAK

Indonesia merupakan salah satu negara di Asia Tenggara yang wilayahnya terletak di Cincin Api Pasifik, sebuah wilayah dengan pergerakan lempeng paling aktif di muka bumi. Hampir seluruh wilayah Indonesia dilintasi oleh dua rangkaian pegunungan termuda di dunia, yaitu Pegunungan Lingkar Mediterania di sebelah barat dan Pegunungan Lingkar Pasifik di sebelah timur, namun Kalimantan merupakan satu-satunya pulau yang tidak memiliki gunung berapi. Keberadaan kedua jalur tersebut menjadi penyebab banyaknya gunung aktif penyebab gempa di Indonesia. Metode analisis dinamik yang digunakan yaitu analisis ragam respons spectrum. Tujuan penelitian ini adalah menganalisis gaya geser balok dan menganalisis rasio tulangan balok. Metodologi penelitian menggunakan ETABS V. 21.1.0. Berdasarkan metode penelitian pada Gedung Kantor Proklamasi Jakarta Pusat pada Tugas Akhir ini diperoleh hasil dari output ETABS V.21.1.0. didapat nilai gaya geser dan nilai gaya momen arah X dan arah Y pada lantai 6. Nilai gaya geser terbesar arah X yaitu 1,8644 kN dan nilai momen terbesar arah X yaitu 0,4621 kN-m. Kemudian nilai gaya geser terbesar arah Y yaitu 7,0843 kN dan nilai momen terbesar arah Y yaitu 1,7656 kN-m. Perhitungan rasio manual, tulangan dengan D19 diperlukan 6 batang. Dengan AS minimal 720 mm². Kemudian tulangan dapat dipasang n < m, jadi dipakai B79 = 6D19.

1. PENDAHULUAN

Indonesia merupakan salah satu negara di Asia Tenggara yang wilayahnya terletak di Cincin Api Pasifik, sebuah wilayah dengan pergerakan lempeng paling aktif di muka bumi. Hampir seluruh wilayah Indonesia dilintasi oleh dua rangkaian pegunungan termuda di dunia, yaitu Pegunungan Lingkar Mediterania di sebelah barat dan Pegunungan Lingkar Pasifik di sebelah timur, namun Kalimantan merupakan satu-satunya pulau yang tidak memiliki gunung berapi. Keberadaan kedua jalur tersebut menjadi penyebab banyaknya gunung aktif penyebab gempa di Indonesia.

Respons suatu struktur terhadap gaya gempa dapat ditentukan dengan menggunakan analisis statik ekuivalen, serta analisis dinamik dengan menggunakan metode *respons spectrum* dan riwayat waktu atau *time history*. Metode analisis seismik yang tersedia bergantung pada kategori desain seismik, sistem struktur itu sendiri, dan karakteristik dinamisnya. *Respon spectrum* merupakan penyajian data berupa grafik/kurva antara periode getaran suatu struktur dengan getaran seismik yang diperoleh dari spektrum dengan rasio redaman yang ditentukan berdasarkan respon maksimum. Pentingnya aspek

suatu struktur gedung terutama gedung perkantoran dikarenakan gedung perkantoran merupakan tempat dimana banyak orang yang mehabiskan waktunya untuk bekerja sehingga penting untuk memperhatikan bagaimana kinerja struktur pada saat terjadi gempa bumi.

2. METODE

Untuk memperoleh tujuan penelitian yang diinginkan maka dilakukan pengumpulan data. Dalam penelitian, teknik pengumpulan data merupakan faktor penting demi keberhasilan penelitian karena akan berkaitan dengan mengumpulkan data maupun sumbernya. Dalam melakukan penelitian ini juga dilakukan dengan menggunakan bantuan *software* ETABS v.21.1.0

3. HASIL DAN PEMBAHASAN

3.1 Pemodelan Struktur

Pemodelan adalah struktur data numeric matematis mewakili struktur *real* yang digunakan sebagai input komputer.

3.2 Langkah Pemodelan

a. Tahap awal dalam pemodelan dengan klik – *New Model* setelah itu akan muncul gambar *Model Initialization* menu ini adalah untuk menentukan satuan pada lembar kerja pemodelan, karena Indonesia memakai satuan SNI maka pada menu tersebut dapat kita rubah menjadi *Matric SI*.

O Use Saved User Default Settinge			0
O use saved user belauk settings			U.
Use Settings from a Model File			0
Use Built-in Settings With:			
Display Units	Metric SI	~	0
Steel Section Database	AISC14	~	
Steel Design Code	AISC 360-10	~	0
	ACI 318-14	~	0

Sumber : data ETABS

Gambar 3. 1 Model Initialization

- b. Langkah selanjutnya menginput data teknis gedung yang meliputi :
 - Jumlah lantai (Number of Stories)
 - Ketinggian antar lantai yang sama (Typical Story Height)
 - Ketinggian lantai bawah (Bottom Story Height)
 - Jumlah titik grids pada sumbu x (*Number of Grids Line in X Direction*)
 - Jumlah titik grids pada sumbu y (Number of Grids Line in Y Direction)
 - Jarak antara titik grids pada sumbu x (Spacing of Grids in X Direction)
 - Jarak antara titik grids pada sumbu y (Spacing of Grids in Y Direction)

Selanjutnya pada menu New Model Quick Tempaltes Klik Edit Grid Data untuk menentukan jumlah dan titik (AS) pada sumbu x dan sumbu y bangunan.

Kemudian untuk menentukan ketinggian setiap lantai struktur bangunan klik *Edit Story Data*.

	ar)			Story Dener	alena		
O Uniform Grid	Spacing			O See	e Story Data		
Number of G	ind Loses in # Descrition			N.e	her of Strengt		
Number of D	id Lines is 7 Destine			7.0	of Dory Height		
Space of O	into in X Devotion			3.0	ro Story Height		
Sparse of S	inits in it Direction.						
Specify Ged	Labeling Options		Cont Labora				
() Custon Grid	Specing			@ Cust	in Story Data		
Specify Data	for Grid Lines		Edit Ged Data	Spec	ify Custom Story Data	6	R Story Data
Add Structural Obje	cts						
Add Structural Obje	cia	[]					In the
Add Structurel Days							
Add Structural Obje	ca				8		
Add Structural Obje	Gill Driv	Rest Deck	Baggered Truss		Tel Sab y D	Varife Sao	Teel Way

Sumber :data ETABS

Gambar 3. 2 New Model Quick Templates

c. Membuat jarak antar As Bangunan

Jarak antar As bangunan untuk pembuatan kolom balok serta garis bantu dapat diinput dengan klik kanan – *edit grid data* – *Modify/show system*.

	ne	Story	Range Option		Cack to Modify	/snow:			
Proklamasi		C	Default - All Stories		F	Reference Points			
dan Oirin			User Specified		F	leference Planes			
ystelli Origin			Top Story					2 ¹ 11	ŤНН
Global X	0	m	LT RA ATAP		Options			ő	
Global Y	0	m	Bottom Story		Bubble Size	1250	mm	0	
Rotation	0	deg	Base		Grid Color				
ectangular Gri	ds								
O Display	Grid Data as Ordinates) Display Grid Data ar	s Spacing			Quick Sta	rt New Rectangular	Grids
X Grid Data					Y Grid Data				
Grid ID	X Ordinate (m)	Vsible	Bubble Loc		Grid ID	Y Ordinate (m)	Visible	Bubble Loc	
A	0	Yes	End	Add	- 4	0	Yes	Start	Add
В	8	Yes	End	Delete	3	6.825	Yes	Start	Delete
С	16	Yes	End	Delete	2	14,425	Yes	Start	
D	24	Yes	End		1	21,25	Yes	Start	
E	32	Yes	End	Sort					Sort
F	40	Yes	End						
meral Grids									
Grid ID	X1 (m)		Y1 (m)	X2 (m)	١	(2 (m)	Visible	Bubble Loc	
									Add
									Add
									Add
									Add
									Add Delete Sort by ID

Sumber : data ETABS

Gambar 3. 3 Edit Grid Data

d. Membuat Matrial Properties

Selanjutnya memasukkan material atau data bahan yang digunakan untuk membuat material beton dengan cara *Define – Material Properties – 4000Psi – Modify*.

erials	Click to:
992Fy50	Add New Material
15Gr60	Add Copy of Material
A4 164270 Beton F'c : 40 MPa base-4 BJTS 420A BJTS 280 Beton F'c 35 Mpa 5top	Modify/Show Material
	Delete Material
	OK

Sumber : data ETABS

Gambar 3. 4 Define Material

e. Membuat material kolom

Tahapan selanjutnya yaitu menginput data kolom yang akan digunakan, material yang harus disiapkan seperti mutu beton bertulang dan mutu tulangan. Klik *Define* – *Material Properties* – 4000Psi – *Modify*. Disini menggunakan mutu beton *F*'c 40.

ieneral Data				
Property Name	K1 A			
Material	Beton F'c : 40	MPa		2
Notional Size Data	Modify/Sh	ow Notional Size		• 3
Display Color	Change			→
Notes	Modify/Show Notes			1 I I I
ihape				
Section Shape	Concrete Recta	angular	~	
ection Property Source				
Source: User Defined				Property Modifiers
ection Dimensions				Modify/Show Modifiers
Depth		600		Currently User Specified
Depart		000		Reinforcement
Width		600	mm	Modify/Show Rebar
				ОК
	Show Section Properties			Cancel

Sumber : data ETABS

Gambar 3. 5 Dimensi Kolom

f. Membuat material balok

Tahapan untuk menginput balok yaitu dengan cara klik *Define – Section Properties – Frame Section.*

Seneral Data				_
Property Name	B1 46×65			
Material	Beton Fio : 3	0 MPa	·	2
Notional Size Data	Modify/3	Show Notional Size		3
Display Color		Change		→
Notes	Mod	fy/Show Notes		
hape				
Section Shape	Concrete Re	ctangular	¥.	-
ection Property Source				
Source: User Defined				Property Modifiers
ection Dimensions				Modify/Show Modifiers
Depth		460	mm	Currently User Specified
Width		650	mm	Reinforcement
		-		Modify/Show Rebar
				OK

Sumber : data ETABS

Gambar 3. 6 Dimensi Balok

g. Membuat material pelat lantai

Tahapan untuk menginput pelat lantai dengan cara klik *Define – Section Properties – Slab Section*.

seneral Data	
Property Name	PLAT LANTAI
Slab Material	Beton F'c : 35 MPa 🗸 🗸
Notional Size Data	Modify/Show Notional Size
Modeling Type	Shell-Thick 🗸
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Туре	Slab ~
roperty Data	
Thickness	200 mm

Sumber : data ETABS

Gambar 3. 7 Dimensi Pelat

3.3 Pembebanan Struktur

Struktur gedung dirancang mampu menahan baban mati, hidup dan beban gempa sesuai SNI 1726:2019. Dengan berbagai kombinasi pembebanan tersebut diinput ke

ETABS v.21.1.0 dengan cara *Define – Load Combination - Add New*. Berikut bebanbeban Struktur Gedung Kantor Proklamasi Jakarta Pusat yang sesuai dengan SNI 1726:2019:

- Beban Mati (Dead Load)
- Beban Hidup (*Live Load*)
- Beban Gempa (*Earthquake Load*)

3.4 Analisis Gempa

Dalam menentukan analisis gempa, diperlukan hasil respons spektrum menurut website Kementrian Pekerjaan Umum yang dapat diakses pada <u>https://rsa.ciptakarya.pu.go.id/2021/</u> atau RSA. Berdasarkan laporan peta zonasi gempa, data yang didapat untuk daerah Jakarta Pusat didapatkan besarnya nilai:

 $S_{S} = 0,7953$

 $S_1 = 0,3859$

Jakarta merupakan daerah yang mayoritas memiliki jenis berupa tanah sedang. Selain itu hasil penyelidikan tanah pada lokasi struktur bangunan yang akan dibangun juga memiliki kriteria yang sama dengan peraturan SNI 1726:2019 yang menunjukkan bahwa klasifikasi kelas situs pada proyek pembangunan Kantor Proklamasi yaitu SD (tanah sedang).

Berdasarkan SNI 1726:2019 dengan $S_S = 0,0466$ dan $S_1 = 0,0158$ untuk kelas situs SD maka didapat koefisien situs:

 $F_A = 1,6$ $F_V = 2,4$ Untuk nilai S_{DS} dan S_{D1} yaitu: $S_{DS} = 0,7118$ $S_{D1} = 0,4986$

3.5 Kontrol Analisis Data

Setelah semua data diinput ke ETABS tahap akhir adalah *Running* pemodelan, dengan cara *Analyze – Set Load Cases To Run* (pastikan semua dalam keadaan *Rum*) – *Run Now*.

					Click to:
Case	Туре	Status	Action		Run/Do Not Run Case
Dead	Linear Static	Finished	Run		Delete Results for Case
Live	Linear Static	Finished	Run		
Modal	Modal - Eigen	Finished	Run		Run/Do Not Run All
Live non reduksi	Linear Static	Finished	Run		Datas Al Davida
Live reduksi	Linear Static	Finished	Run		Delete All Results
hidup atap	Linear Static	Finished	Run		
angin	Linear Static	Finished	Run		Show Load Case Tree
Always Monitor Options Always Show Never Show Show After Second	8	Show Messages after P Only if Errors If Errors or Warning Always	Run		Run Now
aphragm Centers of Rigidity		Automatic Tabular Output			
Calculate Diantryon Centers of Readly		Heddy/Show Automatic Tabular Output Data			

Sumber : data ETABS

Gambar 3. 8 Set Load Cases To Run

a. Hasil Run ETABS V.21.1.0 Untuk Menentukan Momen dan Geser

Langkah untuk memulai *Run* pada *software* ETABS yaitu dengan cara klik ikon *Play*. Setelah selesai *Run* analisis cek tabel dengan cara pilih *Display – Show Tabel – Result – Frame – Tabel Froces*, sortir data yang ada pada ETABS dengan cara klik kanan pada tabel lalu klik *Extract To Excel*. Dibawah ini merupakan tabel gaya geser dan momen output dari ETABS V.21.1.0.

Tabel 3 1 Element Forces - Beams	

TABLE: Elem	ent Forces - Bear	ns		
Story	Beam	Output Case	V2	M3
LANTAI 6	B79	EQ d X	1,8644	7,0843
LANTAI 6	B79	EQ d Y	0,4621	1,7639
LANTAI 6	B79	EQ d Y	0,4621	1,

Sumber : data ETABS

Keterangan:

V2 = Nilai Geser

M3 = Nilai Momen

Berdasarkan tabel hasil output ETABS V.21.1.0. didapat nilai gaya geser dan nilai gaya momen arah X dan arah Y pada lantai 6. Nilai gaya geser terbesar arah X yaitu 1,8644 kN dan nilai momen terbesar arah X yaitu 0,4621 kN-m. Kemudian nilai gaya geser terbesar arah Y yaitu 7,0843 kN dan nilai momen terbesar arah Y yaitu 1,7656 kN-m.

b. Menghitung Rasio Tulangan Balok Berdasarkan Hasil *Output* ETABS V.21.1.0

Perhitungan luas tulangan utama balok secara otomatis dapat dilihat dengan cara *Design – Concrate Frame Design – Concrete Frame Design – Display Design Info – Longitudinal Reinforcing*. Balok yang akan dianalisis adalah balok lantai 6 B79 (400 X 600) ditunjukkan pada gambar dibawah:

	1254		712	15	56	
	816		848	98	8	
_						0
11						₿

Sumber : data ETABS

Gambar 3. 9 Detail Luas Tulangan yang Ditinjau

Detail luas tulangan tumpuan yang ditinjau sebagai berikut:

Digunaka	n tulangan ulir D19
(D19)	$=\frac{1}{4}\pi d^2$
	$=\frac{1}{4} \times 3,14 \times (19^2)$
	$= \frac{4}{283} \text{ mm}^2$
As min	$= \rho \min x b x h$
Pmin	$=\frac{1.4}{420}=0,0033$ mm
D _{SI}	$=\frac{\phi}{2}+\phi$ sengkang + 40
	$=\frac{19}{2}+13+40$
	= 62.5 = 63 mm
As min	$= 0,003 \text{ x } 400 \text{ x } 600 = 720 \text{ mm}^2$
o min	$\frac{3825,5 x \beta 1 x F c'}{382,5 x 0,814 x 35}$
piiiii	- (400 x Fy) x Fy - (400 x 420)x 420
	$= 0,0316 \text{ mm} > \rho \text{ min}$
n	$=\frac{1566}{1}$
	$\frac{1}{4}x \pi x (D)^2$
	$=\frac{1566}{1}$
	$\frac{1}{4}x$ 3,14 x (19) ²
	= 5,526 (6 batang)
m	$-\frac{b-2xd}{4}+1$
111	$ D+S_n$ $+$ 1
	$=\frac{400-2 \times 63}{100}+1$
	19+40
	= 3,04 (0 batang)
Rasio tula	angan berdasarkan ETABS balok yang ditini

Rasio tulangan berdasarkan ETABS balok yang ditinjau, didapat:

 $As = \frac{1566}{(400x540)} = 0,007 = 1,0\%$

Berdasarkan perhitungan diatas, tulangan dengan D19 diperlukan 6 batang. Kemudian tulangan dapat dipasang n < m, jadi dipakai B79 = 6D19.

4. KESIMPULAN

Berdasarkan hasil analisis elemen horizontal 9 lantai pada gedung kantor Proklamasi Jakarta Pusat pada tugas akhir ini maka penulis dapat mengambil kesimpulan :

- Berdasarkan tabel hasil output ETABS V.21.1.0. didapat nilai gaya geser dan nilai gaya momen arah X dan arah Y pada lantai 6. Nilai gaya geser terbesar arah X yaitu 1,8644 kN dan nilai momen terbesar arah X yaitu 0,4621 kN-m. Kemudian nilai gaya geser terbesar arah Y yaitu 7,0843 kN dan nilai momen terbesar arah Y yaitu 1,7656 kN-m.
- 2. Berdasarkan perhitungan rasio manual, tulangan dengan D19 diperlukan 6 batang. Dengan AS minimal 720 mm². Kemudian tulangan dapat dipasang n < m, jadi dipakai B79 = 6D19.

5. UCAPAN TERIMA KASIH

Puji syukur saya panjatkan kehadirat Allah SWT yang telah memberikan berkah dan rahmat-Nya yang melimpah sehingga saya dapat menyelesaikan Tugas Akhir ini. Dalam penyusun Tugas Akhir ini tidak lepas dari bimbingan, bantuan dan dukungan dari berbagai pihak baik secara langsung maupun tidak langsung oleh karena itu pada kesempatan kali ini penulis ingin mengucapkan terima kasih sebesar-besarnya kepada:

- 1. Bapak Gali Pribadi, ST. MT. selaku pembimbing I yang telah banyak membantu, membimbing dan memberikan pengarahan dalam penyusunan Tugas Akhir ini.
- 2. Bapak Bermando Mangatur Siagian, ST. MT. selaku pembimbing II yang telah banyak membantu, membimbing dan memberikan pengarahan dalam penyusunan Tugas Akhir ini.
- 3. Kepada orang tua yang selalu membantu, mendukung, dan memberikan pengarahan tentang penulisan Tugas Akhir ini.

6. DAFTAR PUSTAKA

- Dunn, A. M., Hofmann, O. S., Waters, B., & Witchel, E. (2011). Cloaking malware with the trusted platform module. In *Proceedings of the 20th USENIX Security Symposium* (pp. 395–410).
- Nurul Hidayati, Hariyadi, & Mukhta Riqi Sab'it Tibaq. (2023). Analisa ketidakberaturan horizontal dan vertikal pada struktur gedung beton bertulang. *PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa*, 12(2), 235–243. https://doi.org/10.22225/pd.12.2.7653.235-243

Prawirodikromo, W. (2012). F;If: 0.1 1 10.

- Pujianto. (2018). Analisa gempa bumi terhadap kerusakan konstruksi. *Analisis Gempa Bumi Terhadap Kerusakan Konstruksi*, 53(9), 1689–1699. repository.umy.ac.id/bitstream/handle/123456789/12322/BAB III.pdf?sequence=7&isAllowed=y
- Purnomo, E., Purwanto, E., & Supriyadi, A. (2014). Analisis Kinerja Struktur Pada Gedung Bertingkat Dengan Analisis Dinamik Respon Spektrum Menggunakan Software ETABS (Studi Kasus: Bangunan Hotel di Semarang). *Matriks Teknik Sipil*, 2(4), 569–576.
- Sistem, D., & Standar, P. (2020). Penerapan Standar Nasional Indonesia. 8.
- Usmat I, N. A., Imran, I., & Sultan, M. A. (2019). Analisa Letak Dinding Geser (Shear Wall) Terhadap Perilaku Struktur Gedung Akibat Beban Gempa. *Techno: Jurnal Penelitian*, 8(2), 297. https://doi.org/10.33387/tk.v8i2.1327
- Syafara, A., Rahmayanti, N., & Saputra, E. (2023). Analisis Respons Ketidakberaturan Horizontal Dan Vertikal Pada Gedung Perkuliahan Di Yogyakarta Dengan Menggunakan Sni 1726-2019. Proceeding Civil Engineering Research Forum ISSN, 2(2), 22–33.
- Castro, F., & Darmiyanti, L. (2021). Gedung Hotel Chadstne Cikarang Jawa Barat. 24(2), 42–49.